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Introduction

Subject 4

I Organic waste is discharged into a river

I The organic matter is degraded by microorganisms under
aerobic conditions

I What is the O2 concentration downstream of the effluent?

A pioneering publication:

Streeter, W. H. and Phelps, W. B. (1925): A study of the
pollution and natural purification of the Ohio River. Public
Health Bull. 146, US Public Health Service, Washington DC.
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Practical aspects 6

I What are common sources of organic waste?

e.g. WWTP, paper and food industry

I How could a basic reaction equation look line?
e.g. Oxidation of Glucose

I How to measure general organic pollution?
z.B. COD, BOD, TOC

I What happens if all O2 has been consumed?
→ alternative pathways of mineralization
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Derivation of equations 14

We consider a mixed system (no in-/outflow) with the following
state variables:

Symbol Units Explanation
Z mg/l Degradable organic matter
X mg/l Dissolved oxygen
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Derivation of equations 15

Considered processes:

I Aerobic decay of organic matter Z by bacteria suspended
in the water column (1st order process)

I Consumption of oxygen X during mineralization of Z
I Exchange of oxygen between water and atmosphere
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Derivation of equations 16

Differential eqiations (ODE) and parameters:

d
dt

Z = −kd · Z (1)

d
dt

X = −kd · Z · s + ka · (Xsat − X ) (2)

Symbol Units Explanation
kd 1/Time Decay rate
ka 1/Time Aeration rate
s Mass X / mass Z Stoichiometric factor
Xsat mg/l O2 saturation level
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Introduction

Simplifying assumptions 18

I System does not turn anaerobic; equations only valid if
X � 0

I Degradation happens in water column only (no bacteria
attached to surfaces)

I Decay rate is constant (no growth of bacteria)

I Effect of temperature is neglected

I ...
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Analytical solution

Re-Definition of state variables 20

Re-definition of state variables leads to simplified ODE:

Old New Relation Meaning
Z L L = Z Biochemical O2 demand for

complete degradation of Z
X D D = Xsat − X O2 saturation deficit

I L is usually labeled BOD (biochem. oxygen demand)
I Stoichiometric factor s equals 1→ omitted

Question: What sign can D take?
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Original and new ODE system 23

Original
d
dt

Z = −kd · Z (1, rep.)

d
dt

X = −kd · Z · s + ka · (Xsat − X ) (2, rep.)

New

d
dt

L = −kd · L (3)

d
dt

D = kd · L− ka · D (4)

Hint d
dt

X =
d
dt

(Xsat − D) = − d
dt

D
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Analytical solution

Integration 25

The first ODE may be solved by separation of variables for the
initial condition L(t = 0) = L0.

d
dt

L = −kd · L∫
1
L
· dL =

∫
−kd · dt

ln(L) = −kd · t + C

L = exp(−kd · t + C) = exp(−kd · t) · C2

L = L0 · exp(−kd · t)
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Integration 27

Integration of the second ODE is much harder.

Insert for L the solution just derived:

d
dt

D = kd · L− ka · D

= kd · L0 · exp(−kd · t)− ka · D

Variables can’t be separated (t and D appear as a sum).
Substitution doesn’t work either.

→ One must use the method of the integrating factor
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Integration 28

Re-order terms:

d
dt

D = kd · L0 · exp(−kd · t)− ka · D

d
dt

D + ka · D = kd · L0 · exp(−kd · t)

Multiply by the integrating factor. In our case, a suitable factor is
exp(ka · t) yielding:

eka·t · d
dt

D + eka·t · ka · D = eka·t · kd · L0 · e−kd ·t

= kd · L0 · e(ka−kd )·t
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Integration 29

The new expression looks even more complicated. But now we
can apply the product rule

v · d
dt

u + u · d
dt

v =
d
dt

(u · v)

to the left hand side. Also making use of the chain rule

d
dt

(eka·t ) = ka · eka·t

we get:
d
dt

(
D · eka·t

)
= kd · L0 · e(ka−kd )·t
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Integration 30

Separation of variables and integration yields:∫
d
(

D · eka·t
)

= kd · L0 ·
∫

e(ka−kd )·t · dt

D · eka·t = kd · L0 · e(ka−kd )·t · 1
ka − kd

+ C

=
kd · L0

ka − kd
· e(ka−kd )·t + C

With the initial condition
D(t = 0) = D0 we get: C = D0 −

kd · L0

ka − kd

We can now solve for D.



Analytical solution

Integration 31

The analytical solutions of Eq. 3 and 4 are:

L = L0 · exp(−kd · t) (5)

D =
kd · L0

ka − kd
·
(

e−kd ·t − e−ka·t
)

+ D0 · e−ka·t (6)

What is the value of analytical solutions in modern times?

I Exact reference for approximate numerical solutions
I Fast calculations
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Analytical solution

Predicted dynamics 34

Excersise

Plot the evolution of L, D and X for a period of 5 days. At t = 0
let L=10 mg/l and assume saturation with resp. to O2. Set the
decay rate to 0.5 d−1 and the aeration rate to 1.8 d−1. Water
temperature is 12 ◦C.

The O2 saturation level (mg/l) can be calculated from
temperature T (◦C) using the Elmore & Hayes (1960) formula.

Xsat = 14.652− 0.41022 · T + 0.007991 · T 2 − 7.7774e-05 · T 3
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Predicted dynamics 35

1 # Analytical solutions
2 L= function (t, p) {
3 with(p, L0 * exp(-kd * t) )
4 }
5 D= function (t, p) {
6 with(p, kd * L0 / (ka - kd) * (exp(-kd * t) -
7 exp(-ka * t)) + D0 * exp(-ka * t) )
8 }
9 # O2 saturation as a function of temperature

10 X_sat= function(T) { 14.652 - 0.41022*T + 0.007991*T^2 - 7.7774e-5*T^3 }

11 p= list(D0= 0, L0= 10, ka= 1.8, kd= 0.5, temp=12) # Parameters
12 time=seq(0, 5, 0.1) # Times of interest
13
14 layout(matrix(1:3,ncol=3))
15 plot(time, L(time, p), type="l", ylab="L") # BOD
16 plot(time, D(time, p), type="l", ylab="D") # O2-Deficit
17 plot(time, X_sat(p$temp)-D(time, p), type="l", ylab="X") # O2-Conc.
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Predicted dynamics 36
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I What values take the state variables after infinite time?
I How to interpret the extreme values?
I How to compute the minimum O2 level?
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Analytical solution

Finding the minimum of O2
38

1. Set dD/dt = 0 and solve for time t
→ Time where the minimum occurs, tx

2. Calculate D at t = tx
3. Convert to O2 using Xmin = Xsat − D(tx )

Hint: Solving dD/dt = 0 for t becomes simpler if one divides by
ka · exp(−ka · t) after differentiation.

Time of occurrence of the minimum

tx =
1

ka − kd
· ln
(

ka

kd
·
(

1− D0 ·
ka − kd

kd · L0

))
(7)
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Finding the minimum of O2
40

The less elegant alternative
1 # Function to be maximized with resp. to its first argument
2 D= function (t, p) {
3 with(p, kd * L0 / (ka - kd) * (exp(-kd * t) -
4 exp(-ka * t)) + D0 * exp(-ka * t) )
5 }
6
7 # Parameters
8 p= list(D0= 0, L0= 10, ka= 1.8, kd= 0.5)
9

10 # Numerical optimization in 1 dimension
11 opt= optimize(f=D, interval=c(0,365), p, maximum=TRUE)
12
13 print(paste("Maximum deficit occurs after",round(opt$maximum*24,1),"hours"))
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Application to a plug-flow system 41

Assumptions

I Transport controlled by advection
I Control volume is homogeneous internally but it doesn’t

mix with neighboring volumes (no longitudinal dispersion)
I Volume reaches a station h after travel time t = h/ux

(ux : velocity)
I Residence time in the reach: T = H/ux
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Application to a plug-flow system 42

The Streeter-Phelps equations (Eq. 5 und 6) are directly
applicable to a moving control volume since time and space are
related through velocity ux .

Excercise

Plot the O2 concentrations for a river stretch of 100 km and find
the location of the minimum. Let the BOD level at the discharge
location (km 0) be 45 mg/l. Assume that the water is initially
clean (O2 saturated). The rates of decay and aeration are
0.5 d−1 and 1.8 d−1, respectively. Temperature is constant at
12 ◦C. The average flow velocity is 0.75 m/s.
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Application to a plug-flow system 43

1 # Analytical solutions
2 L= function (t, p) {
3 with(p, L0 * exp(-kd * t) )
4 }
5 D= function (t, p) {
6 with(p, kd * L0 / (ka - kd) * (exp(-kd * t) -
7 exp(-ka * t)) + D0 * exp(-ka * t) )
8 }
9 # O2 saturation as a function of temperature

10 X_sat= function(T) { 14.652 - 0.41022*T + 0.007991*T^2 - 7.7774e-5*T^3 }

11 p= list(D0= 0, L0= 45, ka= 1.8, kd= 0.5, temp=12) # Initial values
12 h= seq(0, 100, 1) # River stations (km)
13 u= 0.75 / 1000 * 86400 # Velocities (m/s -> km/day)
14
15 t_x= function(p) { # Timing of DO minimum (days)
16 with(p, 1 / (ka - kd) * log( ka/kd * ( 1 - D0 * (ka - kd) / kd / L0)) )
17 }
18
19 plot(h, X_sat(p$temp)-D(t=h/u, p), type="l", xlab="Station (km)", ylab="")
20 abline(v=u*t_x(p), lty=3)
21 mtext(side=3, at=u*t_x(p), paste0("Minimum at km ",round(u*t_x(p),1)))
22 abline(h=X_sat(p$temp), lty=2)
23 legend("topright",bty="n",lty=c(1,2), legend=c("X","X_sat"))
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Discussion

I Why does the minimum of O2 occur far downstream of the
effluent?

I What happens if there is an initial oxygen deficit?
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Parameter estimation 46

How to obtain values for ka and kd?

I By calibration
1. Measure at several locations along a river stretch, or
2. Sample a particular volume at different times (drifting boat)

I There are empirical formulas for ka (e.g. using depth and
velocity as predictors)

I Monitor decay rate kd under lab conditions
(e.g. O2 consumption)
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Numerical solution

Why? 49

I Numerical solutions come with less restrictions
I time-varying external forcings (temperature, loading)

I arbitrary initial conditions (e.g. spatially variable)

I For extended models
I analytical solutions can be hard to find

I a closed-form solutions might not exist at all
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Numerical solution

Using Eq. 1 & 2 51

Estimation of the stoichiometric factor s

1 Use carbon as the base element for organic matter. Then,
a typical unit for Z is mg Corg /l.

2 Reaction (e.g. Chen et al. (1996), Marine Chemistry 54, 179-190)

(CH2O)106(NH3)16(H3PO4) + 138 O2 →
106 CO2 + 16 HNO3 + H3PO4 + 122 H2O

3 Estimate of s in units of (g X / g Z ) i.e. (g O2 / g Corg):

s ≈ 138 · 32
106 · 12

(32 and 12 are molar masses of O2 and C)

Real-world values may be lower (z.B. doi:10.1016/j.ecolmodel.2005.04.016)
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Direct implementation 53

1 # Returns the vector of derivatives (wrapped into a list)
2 model= function(t, y, p) {
3 list(c(
4 Z= -p$kd * y[["Z"]],
5 X= -p$kd * y[["Z"]] * p$s + p$ka * (X_sat(p$temp) - y[["X"]])
6 ))
7 }

8 # O2 saturation as a function of temperature
9 X_sat= function(T) { 14.652 - 0.41022*T + 0.007991*T^2 - 7.7774e-5*T^3 }

10 # Parameters, initial values, and times of interest
11 p= list(ka= 1.8, kd= 0.5, s=3, temp=12)
12 y0= c(Z=10, X=X_sat(p$temp))
13 times= seq(0, 5, 0.1)

14 library(deSolve)
15 res= lsoda(y=y0, times=times, func=model, parms=p)
16 if (attr(res,which="istate",exact=TRUE)[1] != 2) stop("Integration failed.")

17 # Plot concentrations
18 layout(matrix(1:2,ncol=2))
19 res= as.data.frame(res)
20 for (item in c("Z","X"))
21 plot(res$time, res[,item], type="l", xlab="time", ylab=item)
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Implementation in matrix notation 55

Motivation

d
dt

Z = −kd · Z (1, rep.)

d
dt

X = −kd · Z · s + ka · (Xsat − X ) (2, rep.)

I Write identical terms (process rates) only once
→ improved readability
→ faster computation
→ code is easier to maintain

I Better performance due to vectorization (eventually)
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Implementation in matrix notation 56

d
dt

Z = −kd · Z (1, rep.)

d
dt

X = −kd · Z · s + ka · (Xsat − X ) (2, rep.)

Derivatives[
d
dt Z
d
dt X

]
=

Stoichiometry
matrix (transp.)[

−1 0
−s 1

]
·

Process rates[
kd · Z

ka · (Xsat − X )

]
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Implementation in matrix notation 57

Matrix multiplication

C [i , k ] =
∑

(A [i , ] · B [, k ])
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Implementation in matrix notation 58

Two equivalent ways of multiplication

I State variables: A,B,C,D; Process rates: x , y , z
I Note the different layout of the stoichiometry matrix!
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Implementation in matrix notation 59

1 # Vector of process rates
2 rates= function(y, p) {
3 c( decay= p$kd * y[["Z"]],
4 aerat= p$ka * (X_sat(p$temp) - y[["X"]])
5 )
6 }
7 # Stoichiometry matrix
8 # columns: Z, X
9 stoix= function(y, p) {

10 rbind(
11 decay=c( -1, -p$s),
12 aerat=c( 0, 1)
13 )
14 }
15 # Vectors of derivatives and process rates (wrapped into a list)
16 model= function(t, y, p) {
17 return(list( derivs= t(stoix(y,p)) %*% rates(y,p), rates= rates(y,p) ))
18 }

20 # O2 saturation as a function of temperature
21 X_sat= function(T) { 14.652 - 0.41022*T + 0.007991*T^2 - 7.7774e-5*T^3 }
22 # Parameters, initial values, and times of interest
23 p= list(ka= 1.8, kd= 0.5, s=3, temp=12)
24 y0= c(Z=10, X=X_sat(p$temp))
25 times= seq(0, 5, 0.1)
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... Continued ...
26 library(deSolve)
27 res= lsoda(y=y0, times=times, func=model, parms=p)
28 if (attr(res,which="istate",exact=TRUE)[1] != 2) stop("Integration failed.")

29 # Plot concentrations
30 layout(matrix(1:3,ncol=3))
31 res= as.data.frame(res)
32 for (item in c("Z","X"))
33 plot(res$time, res[,item], type="l", xlab="time", ylab=item)
34 # Also plot process rates
35 plot(range(res$time), range(c(res$rates.decay, res$rates.aerat)), type="n",
36 xlab="time",ylab="")
37 lines(res$time, res$rates.decay, lty=1)
38 lines(res$time, res$rates.aerat, lty=2)
39 legend("topright", bty="n", lty=c(1,2), legend=c("Decay","Aeration"))
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Model extension: Oxygen limitation

Results for increased loading 63

How does the O2 level respond to increased organic loading?

Modify the initial concentrations as follows:

1 # Increased organic load
2 y0= c(Z=30, X=X_sat(p$temp))
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Results for increased loading 64
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Model extension: Oxygen limitation

O2 limited degradation 65

Michaelis-Menten model

v = vmax ·
S

h + S

v Reaction velocity
vmax Maximum (unlimited) v
S Concentration of substrate
h Half-saturation constant

Required adaption to process rates and parameters:
1 # New parameter: Half-saturation constant
2 p$hx= 0.5
3
4 # Returns the vector of process rates
5 rates= function(y, p) {
6 c( decay= p$kd * y[["Z"]] * y[["X"]] / (y[["X"]] + p$hx),
7 aerat= p$ka * (X_sat(p$temp) - y[["X"]])
8 )
9 }



Model extension: Oxygen limitation

O2 limited degradation 66

Michaelis-Menten model

v = vmax ·
S

h + S

v Reaction velocity
vmax Maximum (unlimited) v
S Concentration of substrate
h Half-saturation constant

Required adaption to process rates and parameters:
1 # New parameter: Half-saturation constant
2 p$hx= 0.5
3
4 # Returns the vector of process rates
5 rates= function(y, p) {
6 c( decay= p$kd * y[["Z"]] * y[["X"]] / (y[["X"]] + p$hx),
7 aerat= p$ka * (X_sat(p$temp) - y[["X"]])
8 )
9 }
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Further possible extensions

Wish-list 69

I Inclusion of anaerobic processes

I Distinction between O2 consumption from oxidation of
carbon (CBOD) and ammonium (NBOD)

I O2 dynamics due to algal production / respiration
I Sedimentation of organic matter; Processes at

sediment-water interface
I Distinction between dissolved and particulate matter
I Bacteria biomass as a state variable
I Improved transport model (dispersion, non-uniform or

unsteady flow)
I ...
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I Inclusion of anaerobic processes
I Distinction between O2 consumption from oxidation of

carbon (CBOD) and ammonium (NBOD)
I O2 dynamics due to algal production / respiration
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I Inclusion of anaerobic processes
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Example of an enhanced version 76

From Reichert et al. (2001): River water quality model No. 1,
IWA publishing
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Actual complexity 77

From Chapra, S. (1997):
Surface Water Quality
Modeling, McGraw-Hill
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Spatially distributed model (1D)

Generic PDE for a mobile species 79

∂c
∂t

= Dx ·
∂2c
∂x2︸ ︷︷ ︸ − ux ·

∂c
∂x︸ ︷︷ ︸ + R︸︷︷︸

Dispers. Advect. React.

c Concentration (M/L3)
x Spatial coordinate (L)
ux Average velocity (L/T)
Dx Longitudinal dispersions coeff. (L2/T)



Spatially distributed model (1D)

Method-of-lines approach 80

∂c
∂t

= Dx ·
∂2c
∂x2︸ ︷︷ ︸ − ux ·

∂c
∂x︸ ︷︷ ︸ + R︸︷︷︸

Dispers. Advect. React.

I Discretize the x-axis (but not the time axis)
→ Sub-divide reach into boxes

I Replace spatial derivatives by finite differences
→ Turns PDE problem into ODE problem

I Select suitable ODE solver + settings
(e.g. structure of Jacobian)
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Method-of-lines approach 81



Spatially distributed model (1D)

Method-of-lines approach 82

∂c
∂t

= Dx ·
∂2c
∂x2 − ux ·

∂c
∂x

+ R

Index of the box indicated by subscript i

dci

dt
= Dx ·

∆

∆x

(
∆ci

∆x

)
− ux ·

∆ci

∆x
+ Ri

Expanded terms (i − 1: upstream box, i + 1: downstream box)

dci

dt
= Dx ·

(ci+1 − ci)− (ci − ci−1)

∆x2 − ux ·
ci − ci−1

∆x
+ Ri



Spatially distributed model (1D)

Model in matrix notation 83

0-dimensional case (Species: A–D; Process rates: x–z)

1-dimensional case (boxes 1...5; invariant stoichiometry)



Spatially distributed model (1D)

Simplistic river quality model 84

Considered
processes

I Aerobic degradation in water
→ Process 1: Carbon oxidation
→ Process 2: Nitrification

I Aeration
I Advective transport only

(to demonstrate numerical diffusion)

Simulated
species

I Organic carbon (OC), Oxygen (O2),
Ammonium-N (NH4), Nitrate-N (NO3)

I Molar concentrations
→ simpler stoichiometry
→ unambiguous (e.g. NH4 == NH4-N)
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Simplistic river quality model 85

Considered
processes

I Aerobic degradation in water
→ Process 1: Carbon oxidation
→ Process 2: Nitrification

I Aeration
I Advective transport only

(to demonstrate numerical diffusion)

Simulated
species

I Organic carbon (OC), Oxygen (O2),
Ammonium-N (NH4), Nitrate-N (NO3)

I Molar concentrations
→ simpler stoichiometry
→ unambiguous (e.g. NH4 == NH4-N)
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Simplistic river quality model 86

7 # Molar masses of the species’ reference elements (i.e. C, O2, N)
8 molm= list(C=12, O2=32, N=14)
9

10 # Definition of parameters
11 p= list(
12 kd=2/86400, # Rate of decay (1/s)
13 kn=0.1/86400, # Rate of nitrification (1/s)
14 ka=2/86400, # Rate of aeration (1/s)
15 s_O2_C=1/1, # O2 consumed in oxidation of C (mol/mol)
16 s_O2_N=2/1, # O2 consumed in oxidation of NH4-N (mol/mol)
17 s_N_C=16/106, # N:C ratio for OC (mol/mol)
18 hd=2/molm$O2, # Half-saturation conc. of O2 (mmol/L) for decay
19 hn=5/molm$O2, # Half-saturation conc. of O2 (mmol/L) for nitrification
20 O2sat=10/molm$O2, # Saturation level of O2 at fixed temp. (mmol/L)
21 nx=1000, # Number of boxes
22 dx=100, # Length of single box (m)
23 u=0.5) # Velocity (x-section average; m/s)
24
25 # Concentrations of all species will be stored in a single vector
26 # --> A named list of indices allows for convenient and fast access
27 ispec= list(OC= 1:p$nx, O2= p$nx+(1:p$nx),
28 NH4= 2*p$nx+(1:p$nx), NO3= 3*p$nx+(1:p$nx))
29
30 # Initialization of concentrations (all zero, except for O2)
31 y0= double(length(ispec)*p$nx)
32 y0[ispec$O2]= p$O2sat



Spatially distributed model (1D)

Simplistic river quality model 87

... Continued ...
35 # Times of interest
36 # Note: Need to consider the Courant number when setting the time step
37 times=seq(from=0, to=7*86400, by=p$dx/p$u)
38
39 # Definition of boundary conditions (upstream concentrations)
40 # Assumption: Waste-water is discharged into stream on day 2
41 bcond= list(
42 OC= function(t) {ifelse(t>=86400 && t<=2*86400, 10/molm$C, 0)},
43 O2= function(t) {p$O2sat},
44 NH4= function(t) { 0 },
45 NO3= function(t) { 0 }
46 )



Spatially distributed model (1D)

Simplistic river quality model 88

... Continued ...
49 # Definition of the ODE model
50 model= function(t, y, p, ispec) {
51 # Matrix of processes (boxes x processes)
52 rates= cbind(
53 degra= p$kd * y[ispec$OC] * y[ispec$O2]/(y[ispec$O2]+p$hd),
54 nitri= p$kn * y[ispec$NH4] * y[ispec$O2]/(y[ispec$O2]+p$hn),
55 aerat= p$ka * (p$O2sat - y[ispec$O2])
56 )
57 # Stoichiometry matrix (processes x species)
58 stoix= rbind(
59 # OC O2 NH4 NO3
60 degra= c(-1, -p$s_O2_C, p$s_N_C, 0),
61 nitri= c( 0, -p$s_O2_N, -1, 1),
62 aerat= c( 0, 1, 0, 0)
63 )
64 # Matrix of advection terms (boxes x species)
65 tran= cbind(
66 -p$u * diff(c(bcond$OC(t),y[ispec$OC])) / p$dx,
67 -p$u * diff(c(bcond$O2(t),y[ispec$O2])) / p$dx,
68 -p$u * diff(c(bcond$NH4(t),y[ispec$NH4])) / p$dx,
69 -p$u * diff(c(bcond$NO3(t),y[ispec$NO3])) / p$dx
70 )
71 # Matrix of derivatives (boxes x species)
72 return( list(rates %*% stoix + tran) )
73 }



Spatially distributed model (1D)

Simplistic river quality model 89

... Continued ...
76 # Integration (Note: algorithm should account for banded Jacobian matrix)
77 library(deSolve)
78 out= ode.1D(y=y0, times=times, func=model, parms=p, nspec=length(ispec),
79 dimens=p$nbox, ispec=ispec)
80 # Pragmatic handling of numerical artefacts
81 out[out < 1e-12]= 0
82
83 # Prepare data for plotting (concentrations stored as list of matrices,
84 # units converted from mmol/L to mg/L)
85 days= out[,1] / 86400
86 km= seq(from=0.5*p$dx, by=p$dx, length.out=p$nx) / 1000
87 conc= list(OC= out[,1+ispec$OC]*molm$C, O2= out[,1+ispec$O2]*molm$O2,
88 NH4= out[,1+ispec$NH4]*molm$N, NO3= out[,1+ispec$NO3]*molm$N)
89
90 # Plot all concentrations (fields::image.plot is suitable because it
91 # doesn’t interpolate, has a legend included, and it works with layout)
92 library(fields)
93 layout(matrix(1:(ceiling(length(ispec)/2)*2), ncol=2, byrow=TRUE))
94 for (n in names(ispec))
95 image.plot(x=days, y=km, z=conc[[n]], main=n, useRaster=TRUE, legend.mar=10)
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Outlook

When models become complex... 92

I Direct coding of the stoichiometry matrix is ugly
→ Hard to write/read/debug

I Computation times are often critical
→ Fortran or C

I Quick-and-dirty hacks are impossible to maintain
→ Modularity, encapsulation, documentation, ...

→ Automatic code generation becomes attractive
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