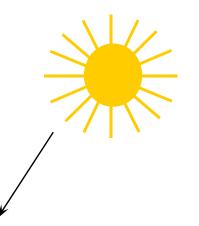
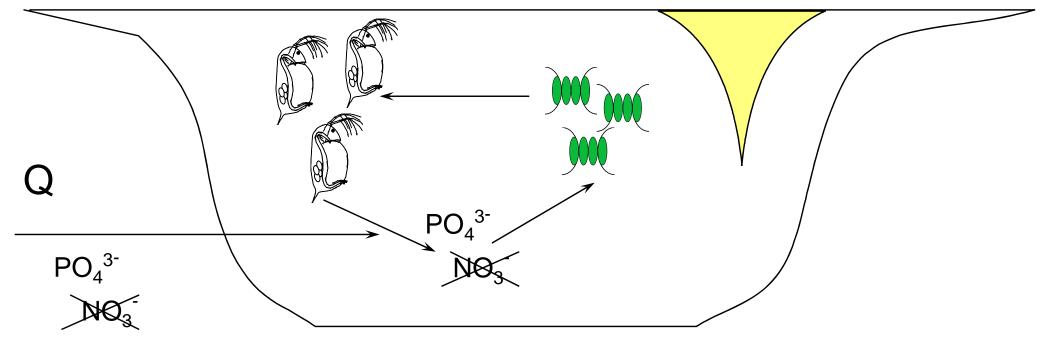
A Model of an ecosystem, e.g., a lake

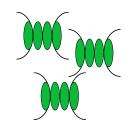
Where to start with?

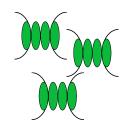
Start with the most interesting parts ... for your purpose, e.g. phytoplankton.





Phytoplankton

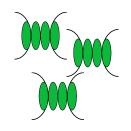




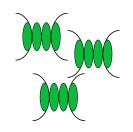
$$N_{today} = N_{yesterday} + growth - death$$

with:

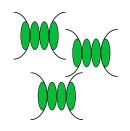
N = Abundance



$$\frac{N_t - N_{t-\Delta t}}{\Delta t} = growth - death$$



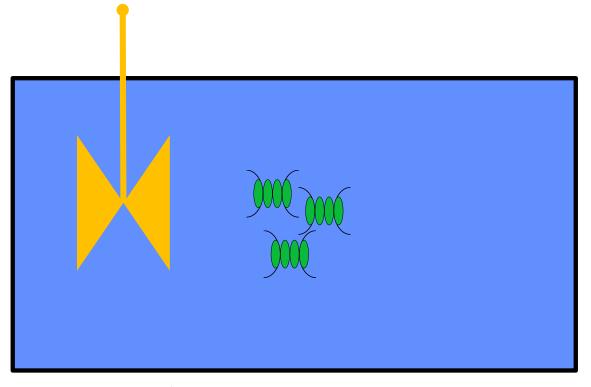
$$\frac{dN}{dt} = growth - death$$



$$\frac{dN}{dt} = growth - death$$

But what is N? N in a culture, a lake, the world???

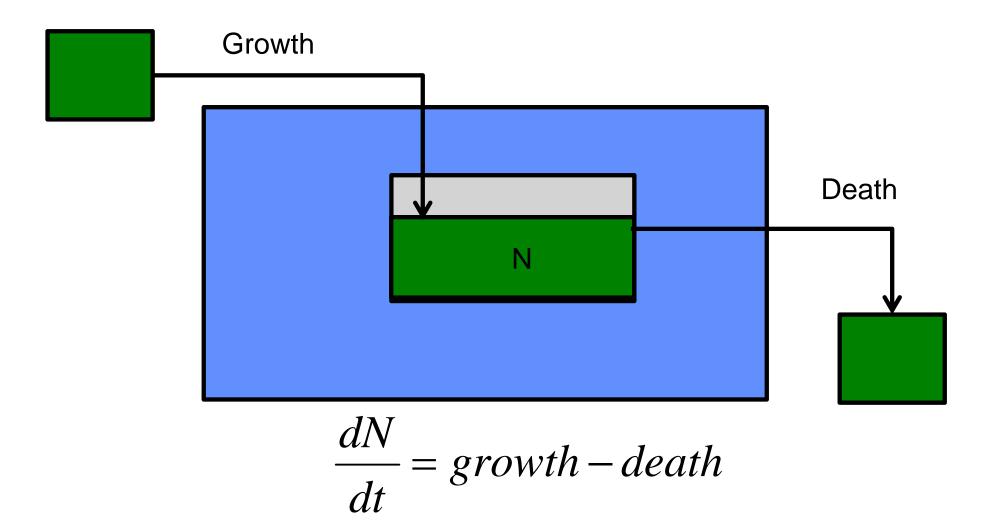
A batch culture



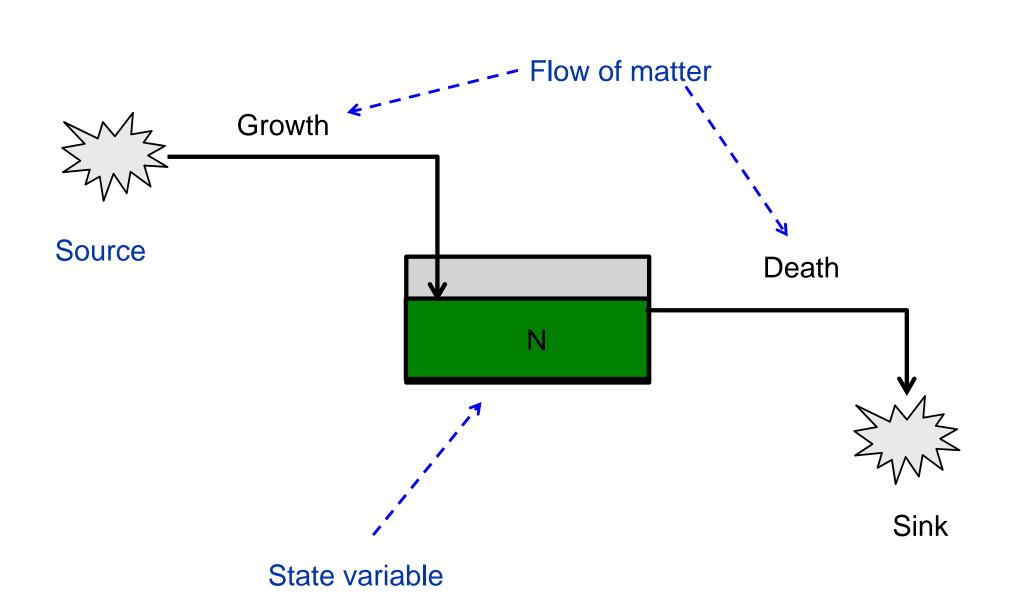
$$\frac{dN}{dt} = growth - death$$

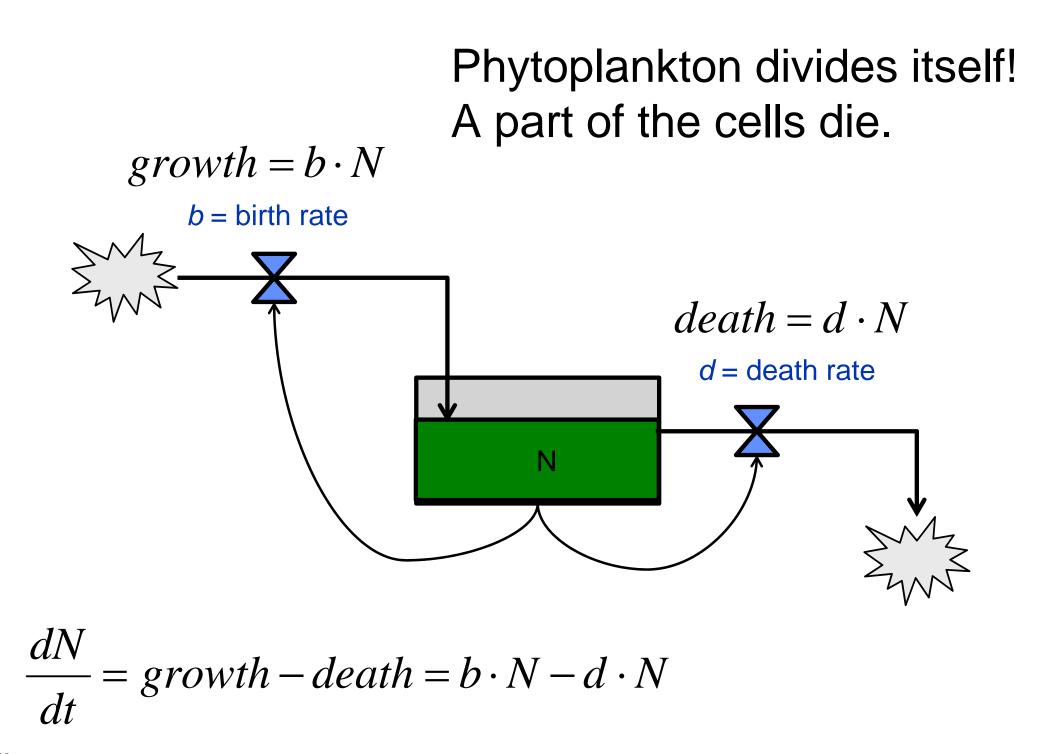
N is abundance per volume (e.g., per litre)

Not only that Phytoplankton is in a pool Phytoplankton itself is a pool!

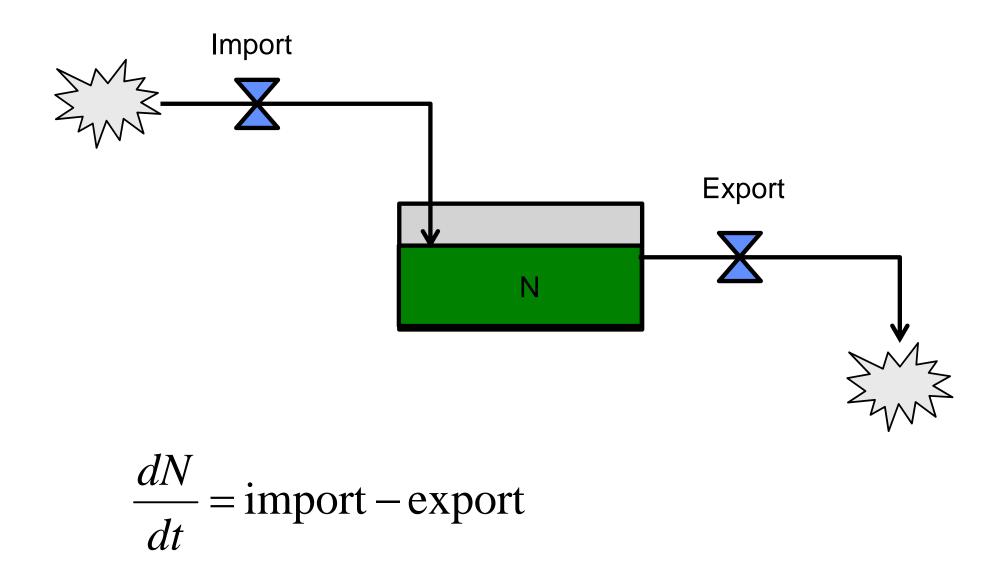


Source, sink, state and flow





The opposite: Import and export



Elementary growth

$$\frac{dN}{dt} = b \cdot N - d \cdot N$$
$$\frac{dN}{dt} = (b - d) \cdot N = r \cdot N$$

In R: Exponential growth, solved analytically

$$\frac{dN}{dt} = rN$$

$$\int_{0}^{t} \frac{dN}{dt} = \int_{0}^{t} rN$$

$$\int_{0}^{t} \frac{1}{N} dN = r \int_{0}^{t} rN$$

$$\ln(N) = rt + c$$

$$N_{t} = N_{0}e^{r \cdot t}$$

parameters, initial values,
time steps
r <- 0.5
NO <- 10
dt <- 0.1
time <- seq(0, 10, dt)</pre>

analytical solution
N <- NO * exp(r * time)
plot(time, N, type="l")</pre>

Exp. growth solved stepwise, numerically

N <- numeric(length(time))</pre>

```
N[1] <- NO
for (i in 2:length(time)) {
    N[i] <- N[i-1] + r * N[i-1] * dt
}
plot(time, N, type = "I")</pre>
```

This is called the Euler method.

Exp. Growth: "individual-based"

```
inds <- 1:10
N[1] <- length(inds)
for (i in 2:length(time)) {
  zufall <- runif(length(inds))</pre>
  newinds <- subset(inds, zufall < r * dt)</pre>
  inds <- c(inds, newinds)
  N[i] <- length(inds)
}
plot(time, N, type = "I")
i nds
```

How is growth limited?

Two fundamentally different approaches:

- 1. Carrying capacity concept
 - Growth rate decreases if "carrying capacity" is approached.

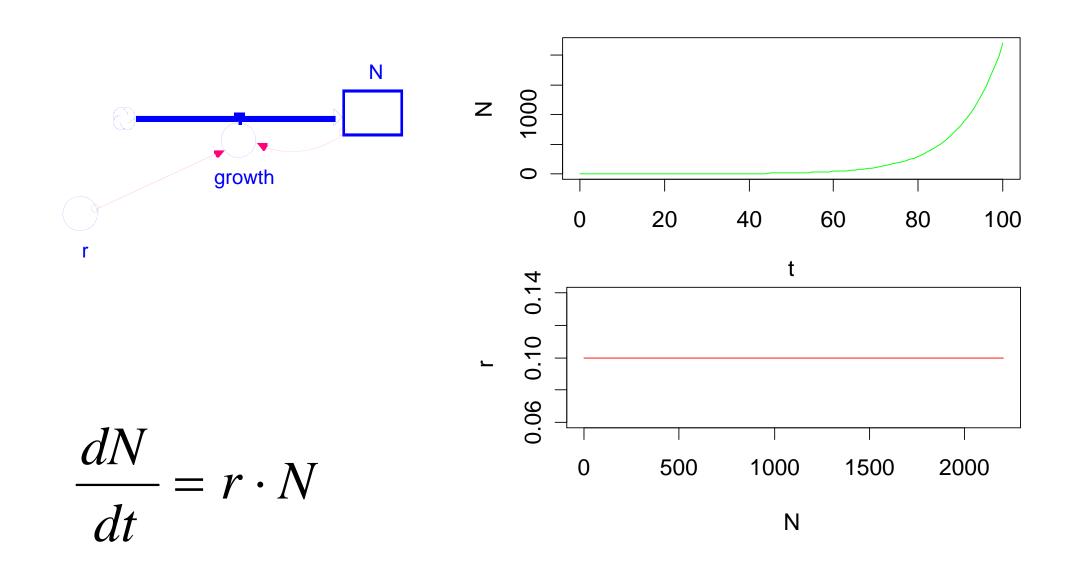
2a) Limiting resource

• Phosphorus, nitrogen, ...

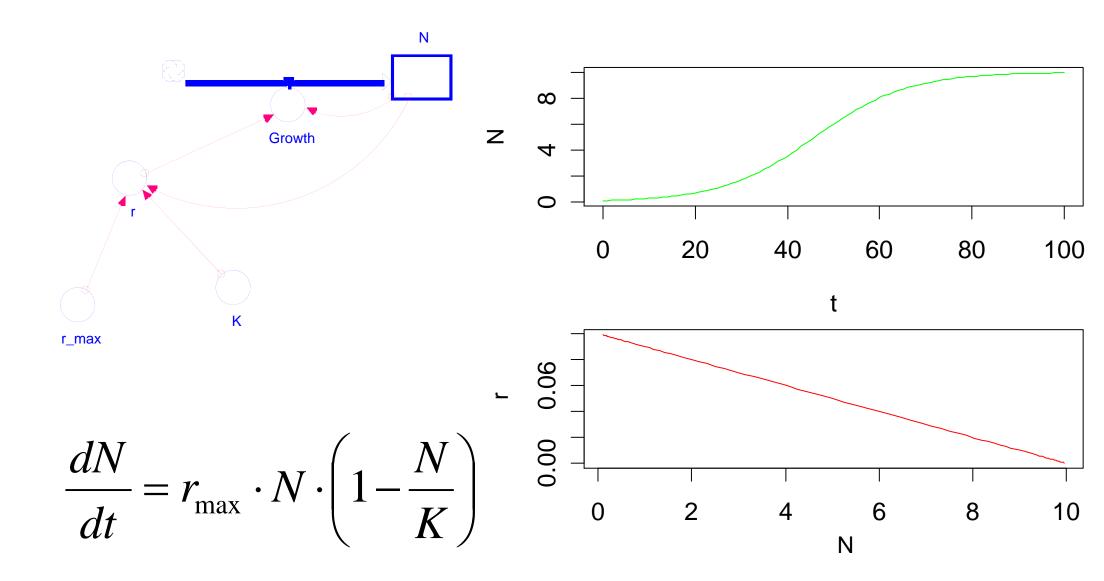
2b) Grazing and predation

Abundance is controlled by another species (i.e., interaction)

Exponential Growth



Carrying Capacity: Logistic Growth



Solution of the Logistic

Analytical solution:

$$N_t = \frac{KN_0 e^{rt}}{K + N_0 (e^{rt} - 1)}$$

```
logistic <- function(t, r, K, NO) {
   K * NO * exp(r * t) / (K + NO*(exp(r * t) - 1))
}
r <- 0.1; K <- 10; NO <- 0.1
times <- 1:100</pre>
```

```
plot(times, logistic(times, r, K, NO))
```

Numerical simulation with package deSolve

```
library(deSolve)
model <- function (time, y, parms) {</pre>
  with(as.list(c(y, parms)), {
    dx1 <- r * N * (1 - N / K)
    list(c(dx1))
 })
}
y < - C(N = 0.1)
parms <-c(r = 0.1, K = 10)
times <- seq(0, 100, 1)
out <- ode(y, times, model, parms)</pre>
```

plot(out)

How does ode work?

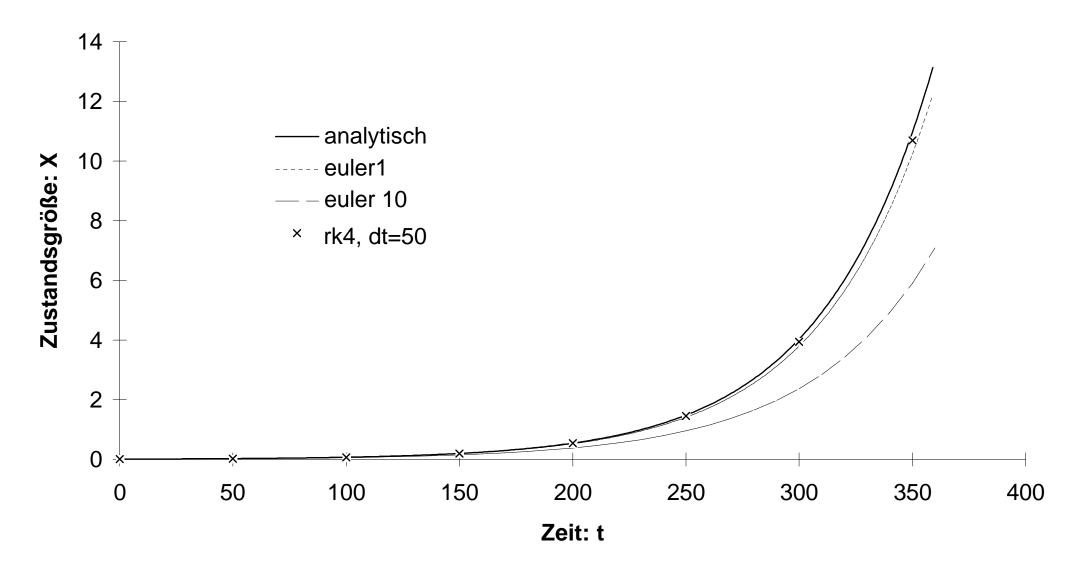
- ode is a "differential equation solver function" provided by the R package deSolve
- it runs specific integration methods (e.g. lsoda, ode45, rk4, euler) that call the model function for specific time steps with the specified parameters.
- some of the functions use exactly the time step specified by the user (**euler**)
- others do extra steps to increase accuracy (**rk4**, ...)
- most other solvers select the time steps automatically to ensure a given accuracy
 - Isoda, Isode, vode, ode45, ...
 - the tolerance can be adjusted with atol and rtol

Exercise:

- compare other solvers (method = "euler"), especially:
 - Isoda (the default and the "first choice" recommended to start with)
 - **euler** (simulates the model step by step without additional measures)
 - \rightarrow modify the time steps
 - ... other solvers, if you like.

Analytical and numerical integration

dX/dt=0.02*X; X0=0.01



Classical Runge-Kutta method of 4th order

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f(t_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}hk_{1})$$

$$k_{3} = f(t_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}hk_{2})$$

$$k_{4} = f(t_{n} + h, y_{n} + hk_{3})$$

$$y_{n+1} = y_n + \frac{1}{6}h\left(k_1 + 2k_2 + 2k_3 + k_4\right)$$

$$t_{n+1} = t_n + h$$

RK4 method

- an explicit method, that uses the value of the last time step y(n)
- value of the new time step y(n+1) is calculated as weighted mean of 4 derivatives of intermediate time steps.

Problems of rk4

Disadvantages: low Precision, high effort

- Precision of the results is unknown
 - \rightarrow large step size: precision too low
 - \rightarrow small step size: sufficient precision, but effort too high
- → Danger of Instability
- possibility of wrongly negative values \rightarrow fluctuations
- this is a problem of all fixed step methods, including Euler

Advantages

- If a good choice for step size is know, rk4 can be efficient because:
 - Interpolation step size for external forcing functions is known
 - Possibility to couple several models with different time step.

Other methods

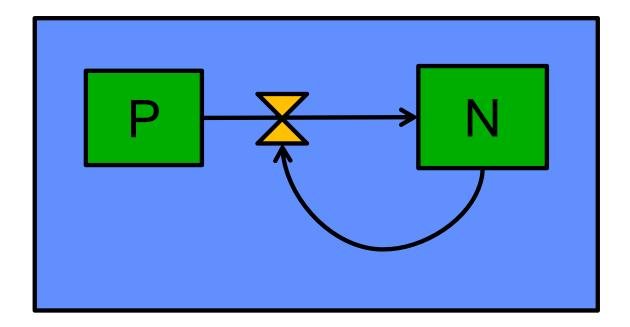
- Explicit, implicit, semi-implicit
 - explicit methods: forward calculation, using only the last time step y(t)
 - implicit methods use the new time step y(t), but require iteration
 - semi-implicit methods use both, y(t) and y(t+1)
- Numerous explicit methods available, e.g. Runge-Kuttas
 - > library(deSolve)
 - > rkMethods()
- Variable step size methods combine two methods or one method with two time steps. The error is calculated by comparison of the two methods.
 - e.g.: ode23, ode45 (Dormand-Prince)
- AB-Method (explicit method after Adams-Bashforth),
- Adams-Moulton (pedictor-corrector-method; AB formula and implicit corrector)
- BDF (backward differentiation formula, implicit method)
 - suitable for stiff systems

The Isoda solver

- "Livermore Solver for Ordinary Differential Equations" (Isoda) von PETZOLD (1983) and HINDMARSH (1983).
- Isoda selects automatcally one of two integrators:
 - explicit method after Adams for "well behaving systems"
 - implizit BDF (*backward differential formula*)-for stiff problems
- stiffness: state variables have very different "speed of change"
- Additional time saving possible if matrix of derivatives (Jacobian) is known
 - can be provided analytically
 - otherwise approximated, internally

A limiting nutrient

• We have two state variables, the Phytoplankton and a nutrient.



Note: Symbols are often confusing! Population ecologists use N for abundance but N is nitrogen in aquatic sciences.

So practical modellers use often abbreviations consiting of multiple letters (mathematicians doent like this, but it makes programming easier)

A limiting nutrient

• We have two state variables, the Phytoplankton and a nutrient.

$$\frac{dAlg}{dt} = r_{max} \cdot f(P) \cdot Alg$$
$$\frac{dP}{dt} = \dots$$

dt

Mass balances and conversions

$$\frac{dAlg}{dt} = r_{max} \cdot f(P) \cdot Alg$$
$$\frac{dP}{dt} = \dots$$

Excercise:

- how can we describe f(P)? (It's a well-known function)
- what happens with the phosphorus?

Mass balances and conversions

$$\frac{d\operatorname{Alg}}{dt} = r_{\max} \cdot f(P) \cdot \operatorname{Alg}$$
$$\frac{dP}{dt} = -r_{\max} \cdot \frac{1}{Y} \cdot f(P) \cdot \operatorname{Alg}$$
$$f(P) = \frac{P}{k_P + P}$$

Phosphorus dependent growth

```
model <- function (time, y, parms) {</pre>
  with(as.list(c(y, parms)), {
    f < - P/(kP + P)
    dAlg <- r * f * Alg
    dP <- - r * 1/Y * f * Alg
    list(c(dAlg, dP))
  })
}
   <- c(Alg = 0.1, P = 0.2) # in mg/L</pre>
V
parms <-c(r = 0.1, kP = 5e-3, Y = 41) \# Y = C: P mass ratio
times <- seq(0, 100, 1)
out <- ode(y, times, model, parms)</pre>
plot(out)
```

Molar mass calculations

- > library(marelac)
- > redfield(1, species="P")
 C H O N P
 106 263 110 16 1

> redfield(1, species="P", method="mass")
 C H 0 N P
 41.10363 8.558477 56.82016 7.235388 1

Exercise

Now, try the same with eul er and rk4

- then reduce the stepsize (e.g. 1.0, 0.8, 0.5, 0.1)
- this can be done either by modifying the **times** vector

Now, try Isoda with **increased** step size!