
ÖS1

A Model of an ecosystem, e.g., a lake

PO4
3-

NO3
-PO4

3-

NO3
-

Q

Where to start with?

Start with the most interesting parts
… for your purpose, e.g. phytoplankton.

Phytoplankton

ÖS2

Mass balance of phytoplankton

ÖS3

Abundance
:with

N

deathgrowthNN yesterdaytoday

Mass balance of phytoplankton

ÖS4

deathgrowth
t
NN ttt

Mass balance of phytoplankton

ÖS5

deathgrowth
dt
dN

Mass balance of phytoplankton

ÖS6

deathgrowth
dt
dN

But what is N? N in a culture, a lake, the world???

A batch culture

ÖS7

deathgrowth
dt
dN

N is abundance per volume (e.g., per litre)

Not only that Phytoplankton is in a pool
Phytoplankton itself is a pool!

ÖS8

deathgrowth
dt
dN

Growth

Death

N

Source, sink, state and flow

ÖS9

Growth

Death

N

Source

Sink

State variable

Flow of matter

Phytoplankton divides itself!
A part of the cells die.

ÖS10

b = birth rate

d = death rate

N

Nbgrowth

Nddeath

NdNbdeathgrowth
dt
dN

The opposite: Import and export

ÖS11

N

exportimport
dt
dN

Import

Export

Elementary growth

ÖS12

NrNdb
dt
dN

NdNb
dt
dN

)(

In R: Exponential growth, solved analytically

parameters, initial values,

time steps

r <- 0.5

N0 <- 10

dt <- 0.1

time <- seq(0, 10, dt)

analytical solution

N <- N0 * exp(r * time)

plot(time, N, type="l")
tr

t

tt

tt

eNN
crtN

rNrdN
N

rN
dt
dN

rN
dt
dN

0

00

00

)ln(

1

Exp. growth solved stepwise, numerically

N <- numeric(length(time))

N[1] <- N0

for (i in 2:length(time)) {

N[i] <- N[i-1] + r * N[i-1] * dt

}

plot(time, N, type = "l")

This is called the Euler method.

Exp. Growth: „individual-based"

inds <- 1:10

N[1] <- length(inds)

for (i in 2:length(time)) {

zufall <- runif(length(inds))

newinds <- subset(inds, zufall < r * dt)

inds <- c(inds, newinds)

N[i] <- length(inds)

}

plot(time, N, type = "l")

inds

How is growth limited?

Two fundamentally different approaches:

1. Carrying capacity concept
• Growth rate decreases if „carrying capacity“ is approached.

2a) Limiting resource
• Phosphorus, nitrogen, …

2b) Grazing and predation
Abundance is controlled by another species (i.e., interaction)

Exponential Growth

0 20 40 60 80 100

0
10

00

t

X

0 500 1000 1500 2000
0.

06
0.

10
0.

14

X

Nr
dt
dN

N

growth

r

N

r
N

Carrying Capacity: Logistic Growth

K
NNr

dt
dN 1max

0 20 40 60 80 100

0
4

8

t

X

0 2 4 6 8 10

0.
00

0.
06

N

r
N

N

Growth

r

K
r_max

Solution of the Logistic

)1(0

0

 rt

rt

t eNK
eKNN

Analytical solution:

logistic <- function(t, r, K, N0) {
K * N0 * exp(r * t) / (K + N0*(exp(r * t) - 1))

}
r <- 0.1; K <- 10; N0 <- 0.1
times <- 1:100

plot(times, logistic(times, r, K, N0))

Numerical simulation with package deSolve

library(deSolve)

model <- function (time, y, parms) {

with(as.list(c(y, parms)), {

dx1 <- r * N * (1 - N / K)

list(c(dx1))

})

}

y <- c(N = 0.1)

parms <- c(r = 0.1, K = 10)

times <- seq(0, 100, 1)

out <- ode(y, times, model, parms)

plot(out)

How does ode work?

• ode is a „differential equation solver function“ provided by the R package deSolve
• it runs specific integration methods (e.g. lsoda, ode45, rk4, euler) that call the model

function for specific time steps with the specified parameters.

• some of the functions use exactly the time step specified by the user (euler)
• others do extra steps to increase accuracy (rk4, ...)
• most other solvers select the time steps automatically to ensure a given accuracy

– lsoda, lsode, vode, ode45, …
– the tolerance can be adjusted with atol and rtol

Exercise:
• compare other solvers (method = “euler“), especially:

– lsoda (the default and the "first choice" recommended to start with)

– euler (simulates the model step by step without additional measures)

modify the time steps

… other solvers, if you like.
ÖS21

dX/dt=0.02*X; X0=0.01

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

Zeit: t

Zu
st

an
ds

gr
öß

e:
 X

analytisch
euler1
euler 10
rk50

Analytical and numerical integration

rk4, dt=50

Classical Runge-Kutta method of 4th order

RK4 method
- an explicit method, that uses the value of the last time step y(n)
- value of the new time step y(n+1) is calculated as

weighted mean of 4 derivatives of intermediate time steps.

Problems of rk4

Disadvantages: low Precision, high effort

• Precision of the results is unknown
 large step size: precision too low
 small step size: sufficient precision, but effort too high

 Danger of Instability
• possibility of wrongly negative values fluctuations
• this is a problem of all fixed step methods, including Euler

Advantages

• If a good choice for step size is know, rk4 can be efficient because:
– Interpolation step size for external forcing functions is known
– Possibility to couple several models with different time step.

ÖS25

Other methods
• Explicit, implicit, semi-implicit

– explicit methods: forward calculation, using only the last time step y(t)
– implicit methods use the new time step y(t), but require iteration
– semi-implicit methods use both, y(t) and y(t+1)

• Numerous explicit methods available, e.g. Runge-Kuttas
> library(deSolve)
> rkMethods()

• Variable step size methods combine two methods or one method with two time steps.
The error is calculated by comparison of the two methods.
– e.g.: ode23, ode45 (Dormand-Prince)

• AB-Method (explicit method after Adams-Bashforth),
• Adams-Moulton (pedictor-corrector-method; AB formula and implicit corrector)
• BDF (backward differentiation formula, implicit method)

– suitable for stiff systems

ÖS26

The lsoda solver

• „Livermore Solver for Ordinary Differential Equations“ (lsoda) von PETZOLD
(1983) and HINDMARSH (1983).

• lsoda selects automatcally one of two integrators:
– explicit method after Adams for „well behaving systems“
– implizit BDF (backward differential formula)-for stiff problems

• stiffness: state variables have very different „speed of change“

• Additional time saving possible if matrix of derivatives (Jacobian) is known
– can be provided analytically
– otherwise approximated, internally

A limiting nutrient

• We have two state variables, the Phytoplankton and a nutrient.

ÖS27

NP

Note: Symbols are often confusing!
Population ecologists use N for abundance

but N is nitrogen in aquatic sciences.

So practical modellers use often abbreviations consiting of multiple letters
(mathematicians doent like this, but it makes programming easier)

A limiting nutrient

• We have two state variables, the Phytoplankton and a nutrient.

ÖS28

AlgP

...
dt
dP

Pfr
dt

d

 Alg)(Alg
max

Mass balances and conversions

ÖS29

...
dt
dP

Pfr
dt

d

 Alg)(Alg
max

Excercise:

• how can we describe f (P) ? (It‘s a well-known function)
• what happens with the phosphorus?

Mass balances and conversions

ÖS30

Pk
Pf(P)

Pf
Y

r
dt
dP

Pfr
dt

d

P

Alg)(1

Alg)(Alg

max

max

Phosphorus dependent growth
model <- function (time, y, parms) {

with(as.list(c(y, parms)), {

f <- P/(kP + P)

dAlg <- r * f * Alg

dP <- - r * 1/Y * f * Alg

list(c(dAlg, dP))

})

}

y <- c(Alg = 0.1, P = 0.2) # in mg/L

parms <- c(r = 0.1, kP = 5e-3, Y = 41) # Y = C:P mass ratio

times <- seq(0, 100, 1)

out <- ode(y, times, model, parms)

plot(out)

ÖS31

Molar mass calculations

> library(marelac)

> redfield(1, species="P")

C H O N P

106 263 110 16 1

> redfield(1, species="P", method="mass")

C H O N P

41.10363 8.558477 56.82016 7.235388 1

ÖS32

Exercise

Now, try the same with euler and rk4

• then reduce the stepsize (e.g. 1.0, 0.8, 0.5, 0.1)

• this can be done either by modifying the times vector

Now, try lsoda with increased step size!

ÖS33

